Google

C*******************************************************************
C**
C**    v e m p 0 2 e x m 0 3 :
C**
C**  velocity driven, time-dependent diffusion on the 3-dimensional
C**  unit cube. For the solution the nonsteady solver is used.
C**  The isoparametrical mesh is generated distributed on the
C**  processors.
C**
C**   by L. Grosz                           Karlsruhe, Jan. 1995
C**
C**
C*******************************************************************
C**
C**                            B4
C**              (0,1,2)     /      (1,1,2)
C**                     *----------*
C**                   / :  B6    / |
C**                 /   :      /   |
C**           B5  *----------*  B3 |
C**             \ |     *----|-----* (1,1,0)
C**               |   /      |   /
C**               | /  B2    | /
C**               *----------*
C**   x3 ^  x2          \     (1,0,0)
C**      | /             B1
C**       -->x1
C**
C**  The problem is the velocity driven diffusion problem, which
C**  is solved by the nonsteady solver vemp02. The domain is the
C**  3-dimensional [0,1] x [0,1] x [0,2] cube. An all
C**  boundaries Neuman boundary conditions are prescribed and on
C**  one point a Dirichlet condition is set.
C**  Using the notations in equation the problem is given by
C**  the functional equation:
C**
C**    Dirichlet conditions: 0<t<=4
C**      u1=b
C**
C**    Initial solution: at t=0
C**      u1=u01
C**
C**    functional equation: F{t,ut,u}(v)=0 on 0<t<=4 with
C**
C**  F{t,ut,u}(v):= volume{v1x1 * u1x1 + v1x2 * u1x2 + v1x3 * u1x3
C**          + v1 * ( ut1 + w1 * u1x1 + w2 * u1x2 + w3 * u1x3 + f)}
C**          +  area{v1 * g}
C**
C**  The functions b, u01, f and g are selected so that
C**  u1=x3*cos(t^2) is the exact solution of this problem. We set
C**  w1=w2=0 and w3=16*x1*x2*(1-x1)*(1-x2).
C**
C**  The domain is subdivided into hexahedron elements of
C**  order 2. Therefore the boundary is subdivided into
C**  quadrilateral elements of order 2. The mesh is generated
C**  distributed onto the processes. The error of the computed
C**  solution approximation is calculated.
C**
      PROGRAM VEMEXM
C**
C**-----------------------------------------------------------------
C**
      IMPLICIT NONE
      include 'bytes.h'
C**
C**-----------------------------------------------------------------
C**
C**    some parameters which may be chanced:
C**
C**    NPROC = number of processors
C**    ELEM1 = number of elements in x1 direction,
C**            in x2 direction also ELEM1 elements will be
C**            generated, but only about ELEM1/NPROC on this
C**            process.
C**    STORE = total storage of process in Mbytes.
C**
      INTEGER       NPROC,ELEM1,STORE

      PARAMETER (NPROC=1,
     &           ELEM1=5,
     &           STORE=25)
C**
C**-----------------------------------------------------------------
C**
C**    ELEM2    = number of elements in x2 direction on process
C**    ELEM3    = number of elements in x3 direction on process
C**               =2*ELEM2, since the channel has the length 2.
C**    N1,N2,N3 = number of nodes in x1,x2,x3-direction on the
C**               process
C**
C**    other parameters are explained in mesh.
C**
      INTEGER       NK,NGROUP,DIM,MESH,GINFO,GINFO1,DINFO,DINFO1,
     &              N1,N2,N3,ELEM2,ELEM3,LOUT

      PARAMETER (ELEM2=ELEM1,ELEM3=(2*ELEM1+NPROC-1)/NPROC,
     &           N1=2*ELEM1+1,
     &           N2=2*ELEM2+1,
     &           N3=2*ELEM3+1,
     &           NK=1,
     &           NGROUP=2,
     &           DIM=3,
     &           MESH  =210+NPROC,
     &           GINFO =30,
     &           GINFO1=23+2*NK,
     &           DINFO =GINFO+GINFO1*NGROUP,
     &           DINFO1=17,
     &           LOUT=6)
C**
C**-----------------------------------------------------------------
C**
C**   the length of the array for the mesh are set:
C**   they are a little bit greater than actual used in the
C**   mesh generation. this is necessary for the mesh distribution.
C**
      INTEGER       NN,LU,LNODN,LNOD,LNOPRM,LNEK,LRPARM,LIPARM,
     &              LDNOD,LIDPRM,LRDPRM,LIVEM,LRVEM,LLVEM,LBIG

      PARAMETER  (NN=N1*N2*N3*1.5,

     &            LU    =NN*NK,
     &            LNODN =NN,
     &            LNOD  =NN*DIM,
     &            LNOPRM=1,

     &            LNEK=(40*(ELEM1*ELEM2*ELEM3)+
     &              32*(ELEM1*ELEM2+ELEM3*ELEM1+ELEM3*ELEM2))*1.5,
     &            LIPARM=(ELEM1*ELEM2*ELEM3+
     &              2*(ELEM1*ELEM2+ELEM3*ELEM1+ELEM3*ELEM2))*1.5,
     &            LRPARM=1,

     &            LDNOD =2*NK*1.5,
     &            LIDPRM=NK*1.5,
     &            LRDPRM=1,

     &            LIVEM =MESH+DINFO+DINFO1*NK+600+LU+LDNOD/2,
     &            LLVEM =500,
     &            LRVEM =60+15*LU)
C**
C**-----------------------------------------------------------------
C**
C**   RBIG should be as large as possible: the available
C**   storage STORE is reduced by all allocated array.
C**   the remaining storage is reserved for RBIG.
C**
      PARAMETER ( LBIG=(STORE * 1 000 000)/IREAL
     &               - (3*LU+LNOD+LNOPRM+LRPARM+LRDPRM)
     &               - (LIVEM+LNODN+LNEK+LIPARM+LDNOD+LIDPRM)/RPI )
C**
C**-----------------------------------------------------------------
C**
C**      variables and arrays :
C**      --------------------
C**
      DOUBLE PRECISION T,NOD(LNOD),NOPARM(LNOPRM),RPARM(LRPARM),
     &                 RDPARM(LRDPRM),RBIG(LBIG),U(LU),RVEM(LRVEM),
     &                 EEST(LU),ERRG(LU),NRMERR(NK)

      INTEGER          IVEM(LIVEM),NODNUM(LNODN),NEK(LNEK),
     &                 IPARM(LIPARM),DNOD(LDNOD),IDPARM(LIDPRM),
     &                 IBIG(RPI*LBIG)

      LOGICAL          MASKL(NK,NK,NGROUP),MASKF(NK,NGROUP),LVEM(LLVEM)
C***
      INTEGER          MYPROC,INFO,OUTFLG,NDNUM0,HERE,S,NE1,ADGEO1,
     &                 NE2,ADGEO2,ADIVP2,ADIVP1,NE0,NDC1,NDC2,
     &                 ADDCG1,ADDCG2,ELNUM0,ELMID,SPACE,LSPACE,STEP
      INTEGER          Z1,Z2,Z3
      DOUBLE PRECISION X30
      CHARACTER*80     NAME
C***
      EXTERNAL VEM630,VEM500
      EXTERNAL DUMMY,USRFU,USERF,USERC,USERB,USRFUT,USERU0
C**
C**-----------------------------------------------------------------
C**
C**  The equivalence of RBIG and IBIG is very important :
C**
      EQUIVALENCE (RBIG,IBIG)
C**
C**-----------------------------------------------------------------
C**
C**   get task ids :
C**
      NAME='a.out'
      IVEM(200)=NPROC
      CALL COMBGN(IVEM(200),MYPROC,LIVEM-203,IVEM(204),NAME,INFO)
      IF (INFO.NE.0) GOTO 9999
      IVEM(201)=MYPROC
      IVEM(202)=0
      IVEM(203)=IVEM(204)
      IF (NPROC.NE.IVEM(200)) THEN
        PRINT*,'Set NPROC=',IVEM(200)
        GOTO 9999
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**   a protocol is printed only on process 1 :
C**
      IF (MYPROC.EQ.1) THEN
        OUTFLG=1
      ELSE
        OUTFLG=0
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**** the parameters are copied into IVEM :
C**   -----------------------------------
C**
      IVEM(1)=MESH
      IVEM(MESH+ 1)=N1*N2*N3
      IVEM(MESH+ 2)=NK
      IVEM(MESH+ 3)=DIM
      IVEM(MESH+ 4)=NGROUP
      IVEM(MESH+ 5)=NN
      IVEM(MESH+13)=NN
      IVEM(MESH+14)=0
      IVEM(MESH+15)=0
      IVEM(MESH+18)=0

      IVEM(MESH+21)=GINFO
      IVEM(MESH+22)=GINFO1
      IVEM(MESH+23)=DINFO
      IVEM(MESH+24)=DINFO1
C**
C**-----------------------------------------------------------------
C**
C**   This process generates the nodes in the subdomain
C**   [0,1] x [0,1] x [ X30,X30+2/NPROC] starting with the node id
C**   number NDNUM0. The nodes with x3=X30 are also generated on
C**   process MYPROC-1 and the nodes with x3=X30+2/NPROC are also
C**   generated on process MYPROC+1. The first element generated
C**   on the process gets the element id number ELNUM0.
C**
      X30=2*DBLE(MYPROC-1)/DBLE(IVEM(200))
      NDNUM0=(MYPROC-1)*N1*N2*(N3-1)+1
      ELNUM0=(MYPROC-1)*(ELEM1*ELEM2*ELEM3+
     &                  2*(ELEM1*ELEM2+ELEM3*ELEM2+ELEM1*ELEM3))+1
C**
C**-----------------------------------------------------------------
C**
C**** the generation of the geometrical nodes :
C**   ---------------------------------------
C**
C**   the grid is regular with N1 points in x1- and N2 points in
C**   x2 direction.
C**
      DO 10 Z3=1,N3
       DO 10 Z2=1,N2
        DO 10 Z1=1,N1
          NOD(Z1+N1*(Z2-1)+N1*N2*(Z3-1)     )=DBLE(Z1-1)/DBLE(N1-1)
          NOD(Z1+N1*(Z2-1)+N1*N2*(Z3-1)+  NN)=DBLE(Z2-1)/DBLE(N2-1)
          NOD(Z1+N1*(Z2-1)+N1*N2*(Z3-1)+2*NN)=
     &                       2*DBLE(Z3-1)/DBLE(IVEM(200)*(N3-1))+X30
          NODNUM(Z1+N1*(Z2-1)+N1*N2*(Z3-1))=Z1+N1*(Z2-1)+N1*N2*(Z3-1)
     &                                                        +NDNUM0-1
 10   CONTINUE
C**
C**-----------------------------------------------------------------
C**
C**** the generation of the elements :
C**   -------------------------------
C**
C**   The domain is covered by hexahedron elements of order 2
C**   and consequently the boundaries are described by
C**   quadrilateral elements of order 2. The succession of the
C**   nodes in the element is defined in vemu02 and vembuild(3).
C**   The lowest node id in an element is S.
C**
C**   ADGEO1 defines the start address of the hexahedrons
C**   elements in NEK and ADIVP1 defines the start address of
C**   the element id number assigned to the elements. The element
C**   id number is unique over all processes. NE1 is the number of
C**   hexahedrons elements generated on the process. HERE gives
C**   the address of the element in NEK, which lowest vertex has
C**   the node id S over all processes.
C**
      ADGEO1=1
      ADIVP1=1
      NE1=ELEM1*ELEM2*ELEM3

      DO 20 Z3=1,ELEM3
       DO 20 Z2=1,ELEM2
        DO 20 Z1=1,ELEM1

          S=2*(Z1-1)+2*(Z2-1)*N1+2*N1*N2*(Z3-1)+NDNUM0
          HERE=Z1+ELEM1*(Z2-1)+ELEM1*ELEM2*(Z3-1)+ADGEO1-1
          ELMID=Z1+ELEM1*(Z2-1)+ELEM1*ELEM2*(Z3-1)+ELNUM0

          IPARM(ADIVP1-1+Z1+ELEM1*(Z2-1)+ELEM1*ELEM2*(Z3-1))=ELMID

          NEK(HERE       )=S
          NEK(HERE+   NE1)=S+2
          NEK(HERE+ 2*NE1)=S+2*N1+2
          NEK(HERE+ 3*NE1)=S+2*N1
          NEK(HERE+ 4*NE1)=S+2*N1*N2
          NEK(HERE+ 5*NE1)=S+2*N1*N2+2
          NEK(HERE+ 6*NE1)=S+2*N1*N2+2*N1+2
          NEK(HERE+ 7*NE1)=S+2*N1*N2+2*N1
          NEK(HERE+ 8*NE1)=S+1
          NEK(HERE+ 9*NE1)=S+N1+2
          NEK(HERE+10*NE1)=S+2*N1+1
          NEK(HERE+11*NE1)=S+N1
          NEK(HERE+12*NE1)=S+N1*N2
          NEK(HERE+13*NE1)=S+N1*N2+2
          NEK(HERE+14*NE1)=S+N1*N2+2*N1+2
          NEK(HERE+15*NE1)=S+N1*N2+2*N1
          NEK(HERE+16*NE1)=S+2*N1*N2+1
          NEK(HERE+17*NE1)=S+2*N1*N2+N1+2
          NEK(HERE+18*NE1)=S+2*N1*N2+2*N1+1
          NEK(HERE+19*NE1)=S+2*N1*N2+N1

 20   CONTINUE
C**
C**   ADGEO2 defines the start address of the line elements
C**   in NEK and ADIVP2 defines the start address of the
C**   element id number assigned to the elements. The entries 1 to
C**   20*NE1 in NEK and 1 to NE1 in IPARM are already used by
C**   the elements in group 1. NE2 is the number of
C**   quadrilateral elements generated on the process, where the
C**   elements on boundary B1/B6 are only generated on process 1
C**   or NPROC. HERE gives the address of the element in NEK, which
C**   is a boundary element of the hexahedrons element with lowest
C**   node id S.
C**
      ADGEO2=ADGEO1+20*NE1
      ADIVP2=ADIVP1+NE1
      NE2=2*(ELEM1+ELEM2)*ELEM3
      IF (MYPROC.EQ.1) NE2=NE2+ELEM1*ELEM2
      IF (MYPROC.EQ.IVEM(200)) NE2=NE2+ELEM1*ELEM2
      NE0=0
C**
C**   these are the quadrilateral elements on boundary 1 (x3=0):
C**   only on process 1. NE0 counts the already generated line
C**   elements
C**
C****  elements on boundary 1 (x3=0): (only on process 1)
C**
      IF (MYPROC.EQ.1) THEN
        DO 31 Z2=1,ELEM2
          DO 31 Z1=1,ELEM1

            HERE=Z1+ELEM1*(Z2-1)+NE0+ADGEO2-1
            ELMID=Z1+ELEM1*(Z2-1)+ELEM1*ELEM2*ELEM3+NE0+ELNUM0
            S=2*(Z1-1)+2*(Z2-1)*N1+NDNUM0

            IPARM(ADIVP2-1+NE0+Z1+ELEM1*(Z2-1))=ELMID

            NEK(HERE      )= S
            NEK(HERE+  NE2)= S+2*N1
            NEK(HERE+2*NE2)= S+2*N1+2
            NEK(HERE+3*NE2)= S+2
            NEK(HERE+4*NE2)= S+N1
            NEK(HERE+5*NE2)= S+2*N1+1
            NEK(HERE+6*NE2)= S+N1+2
            NEK(HERE+7*NE2)= S+1

 31     CONTINUE
        NE0=NE0+ELEM1*ELEM2
      ENDIF
C**
C****  elements on boundary 6 (x3=2): (only on process NPROC)
C**
      IF (MYPROC.EQ.IVEM(200)) THEN
        DO 32 Z2=1,ELEM2
          DO 32 Z1=1,ELEM1

            HERE=Z1+ELEM1*(Z2-1)+NE0+ADGEO2-1
            ELMID=Z1+ELEM1*(Z2-1)+ELEM1*ELEM2*ELEM3+NE0+ELNUM0
            S=2*(Z1-1)+2*(Z2-1)*N1+2*N1*N2*ELEM3+NDNUM0

            IPARM(ADIVP2-1+NE0+Z1+ELEM1*(Z2-1))=ELMID

            NEK(HERE      )= S
            NEK(HERE+  NE2)= S+2
            NEK(HERE+2*NE2)= S+2*N1+2
            NEK(HERE+3*NE2)= S+2*N1
            NEK(HERE+4*NE2)= S+1
            NEK(HERE+5*NE2)= S+N1+2
            NEK(HERE+6*NE2)= S+2*N1+1
            NEK(HERE+7*NE2)= S+N1

 32     CONTINUE
        NE0=NE0+ELEM1*ELEM2
      ENDIF
C**
C****  elements on boundary 5 (x1=0):
C**
      DO 33 Z3=1,ELEM3
        DO 33 Z2=1,ELEM2

          HERE=Z2+ELEM2*(Z3-1)+NE0+ADGEO2-1
          ELMID=Z2+ELEM2*(Z3-1)+ELEM1*ELEM2*ELEM3+NE0+ELNUM0
          S=2*(Z2-1)*N1+2*N1*N2*(Z3-1)+NDNUM0

          IPARM(ADIVP2-1+NE0+Z2+ELEM2*(Z3-1))=ELMID

          NEK(HERE      )= S
          NEK(HERE+  NE2)= S+2*N1*N2
          NEK(HERE+2*NE2)= S+2*N1*N2+2*N1
          NEK(HERE+3*NE2)= S+2*N1
          NEK(HERE+4*NE2)= S+N1*N2
          NEK(HERE+5*NE2)= S+2*N1*N2+N1
          NEK(HERE+6*NE2)= S+N1*N2+2*N1
          NEK(HERE+7*NE2)= S+N1

 33   CONTINUE
      NE0=NE0+ELEM3*ELEM2
C**
C****  elements on boundary 3 (x1=1):
C**
      DO 34 Z3=1,ELEM3
        DO 34 Z2=1,ELEM2

          HERE=Z2+ELEM2*(Z3-1)+NE0+ADGEO2-1
          ELMID=Z2+ELEM2*(Z3-1)+ELEM1*ELEM2*ELEM3+NE0+ELNUM0
          S=2*ELEM1+2*(Z2-1)*N1+2*N1*N2*(Z3-1)+NDNUM0

          IPARM(ADIVP2-1+NE0+Z2+ELEM2*(Z3-1))=ELMID

          NEK(HERE      )= S
          NEK(HERE+  NE2)= S+2*N1
          NEK(HERE+2*NE2)= S+2*N1*N2+2*N1
          NEK(HERE+3*NE2)= S+2*N1*N2
          NEK(HERE+4*NE2)= S+N1
          NEK(HERE+5*NE2)= S+N1*N2+2*N1
          NEK(HERE+6*NE2)= S+2*N1*N2+N1
          NEK(HERE+7*NE2)= S+N1*N2

 34   CONTINUE
      NE0=NE0+ELEM3*ELEM2
C**
C****  elements on boundary 2 (x2=0):
C**
      DO 35 Z3=1,ELEM3
        DO 35 Z1=1,ELEM1
          HERE=Z1+ELEM1*(Z3-1)+NE0+ADGEO2-1
          ELMID=Z3+ELEM3*(Z1-1)+ELEM1*ELEM2*ELEM3+NE0+ELNUM0
          S=2*(Z1-1)+2*N1*N2*(Z3-1)+NDNUM0

          IPARM(ADIVP2-1+NE0+Z1+ELEM1*(Z3-1))=ELMID

          NEK(HERE      )= S
          NEK(HERE+  NE2)= S+2
          NEK(HERE+2*NE2)= S+2*N2*N1+2
          NEK(HERE+3*NE2)= S+2*N1*N2
          NEK(HERE+4*NE2)= S+1
          NEK(HERE+5*NE2)= S+N1*N2+2
          NEK(HERE+6*NE2)= S+2*N2*N1+1
          NEK(HERE+7*NE2)= S+N1*N2

 35   CONTINUE
      NE0=NE0+ELEM3*ELEM1
C**
C****  elements on boundary 4 (x2=1):
C**
      DO 36 Z3=1,ELEM3
        DO 36 Z1=1,ELEM1
          HERE=Z1+ELEM1*(Z3-1)+NE0+ADGEO2-1
          ELMID=Z3+ELEM3*(Z1-1)+ELEM1*ELEM2*ELEM3+NE0+ELNUM0
          S=2*(Z1-1)+2*ELEM2*N1+2*N1*N2*(Z3-1)+NDNUM0

          IPARM(ADIVP2-1+NE0+Z1+ELEM1*(Z3-1))=ELMID

          NEK(HERE      )= S
          NEK(HERE+  NE2)= S+2*N1*N2
          NEK(HERE+2*NE2)= S+2*N1*N2+2
          NEK(HERE+3*NE2)= S+2
          NEK(HERE+4*NE2)= S+N1*N2
          NEK(HERE+5*NE2)= S+2*N2*N1+1
          NEK(HERE+6*NE2)= S+N1*N2+2
          NEK(HERE+7*NE2)= S+1

 36   CONTINUE
C**
C**
C**-----------------------------------------------------------------
C**
C**   the start addresses, etc are written to IVEM:
C**
C**   group 1: hexahedrons elements
C**
      IVEM(MESH+GINFO   ) = NE1
      IVEM(MESH+GINFO+ 2) = 8
      IVEM(MESH+GINFO+ 3) = 3
      IVEM(MESH+GINFO+ 8) = 0
      IVEM(MESH+GINFO+11) = 0
      IVEM(MESH+GINFO+13) = 0
      IVEM(MESH+GINFO+14) = ADIVP1
      IVEM(MESH+GINFO+15) = NE1
      IVEM(MESH+GINFO+16) = 1
      IVEM(MESH+GINFO+20) = ADGEO1
      IVEM(MESH+GINFO+21) = NE1
      IVEM(MESH+GINFO+23) = 20
C**
C**   group 2: quadrilateral elements
C**
      IVEM(MESH+GINFO+GINFO1   ) = NE2
      IVEM(MESH+GINFO+GINFO1+ 2) = 4
      IVEM(MESH+GINFO+GINFO1+ 3) = 2
      IVEM(MESH+GINFO+GINFO1+ 8) = 0
      IVEM(MESH+GINFO+GINFO1+11) = 0
      IVEM(MESH+GINFO+GINFO1+13) = 0
      IVEM(MESH+GINFO+GINFO1+14) = ADIVP2
      IVEM(MESH+GINFO+GINFO1+15) = NE2
      IVEM(MESH+GINFO+GINFO1+16) = 1
      IVEM(MESH+GINFO+GINFO1+20) = ADGEO2
      IVEM(MESH+GINFO+GINFO1+21) = NE2
      IVEM(MESH+GINFO+GINFO1+23) = 8
C**
C**-----------------------------------------------------------------
C**
C**   generation of the nodes with Dirichlet conditions :
C**   -------------------------------------------------
C**
C**   The node with node id number 1 gets a Dirichlet condition:
C**   (only on processor 1)
C**
      IF (MYPROC.EQ.1) THEN
         DNOD(1)=1
         NDC1=1
      ELSE
         NDC1=0
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**   the start addresses, etc are written to IVEM:
C**
C**   component 1:
C**
      IVEM(MESH+DINFO   ) = NDC1
      IVEM(MESH+DINFO+ 2) = 1
      IVEM(MESH+DINFO+ 4) = 0
      IVEM(MESH+DINFO+ 7) = 0
      IVEM(MESH+DINFO+ 9) = 0
      IVEM(MESH+DINFO+12) = 0
C**
C**-----------------------------------------------------------------
C**
C**** print mesh on processor 1
C**   -------------------------
C**
      IVEM(20)=LOUT
      IVEM(21)=0000*OUTFLG
      IVEM(22)=2

      CALL VEMU01(LIVEM,IVEM,LNEK,NEK,LRPARM,RPARM,LIPARM,IPARM,
     &            LDNOD,DNOD,LRDPRM,RDPARM,LIDPRM,IDPARM,
     &            LNODN,NODNUM,LNOD,NOD,LNOPRM,NOPARM,LBIG,RBIG,IBIG)
      IF (IVEM(2).NE.0) GOTO 9999
C**
C**-----------------------------------------------------------------
C**
C**** distribute mesh :
C**   ----------------
C**
      IVEM(80)=LOUT
      IVEM(81)=OUTFLG
      IVEM(51)=2

      CALL VEMDIS (LIVEM,IVEM,LNEK,NEK,LRPARM,RPARM,LIPARM,IPARM ,
     &             LDNOD,DNOD,LRDPRM,RDPARM,LIDPRM,IDPARM,
     &             LNODN,NODNUM,LNOD,NOD,LNOPRM,NOPARM,
     &             LBIG,RBIG,IBIG)
      IF (IVEM(2).NE.0) GOTO 9999
C**
C**-----------------------------------------------------------------
C**
C**** set the initial solution :
C**   ------------------------
C**
      IVEM(30)=LOUT
      IVEM(31)=OUTFLG*0
      T=0.

      CALL VEMU08(T,LU,U,LIVEM,IVEM,LNEK,NEK,LRPARM,RPARM,
     &            LIPARM,IPARM,LDNOD,DNOD,LRDPRM,RDPARM,LIDPRM,
     &            IDPARM,LNODN,NODNUM,LNOD,NOD,LNOPRM,NOPARM,
     &            LBIG,RBIG,IBIG,USERU0)
      IF (IVEM(2).NE.0) GOTO 9999
C**
C**-----------------------------------------------------------------
C**
C**** call of VECFEM :
C**   --------------
C**
      OPEN(10,FORM='UNFORMATTED',STATUS='SCRATCH')
      OPEN(11,FORM='UNFORMATTED',STATUS='SCRATCH')
      OPEN(12,FORM='UNFORMATTED',STATUS='SCRATCH')

      LVEM(1)=.FALSE.
      LVEM(4)=.FALSE.
      LVEM(6)=.TRUE.
      LVEM(7)=.TRUE.
      LVEM(8)=.TRUE.
      LVEM(9)=.FALSE.
      LVEM(10)=.TRUE.
      LVEM(11)=.FALSE.
      LVEM(15)=.FALSE.
      LVEM(16)=.TRUE.
      RVEM(3)=1.D-2
      RVEM(10)=1.D-3
      RVEM(11)=T
      RVEM(12)=4.
      RVEM(13)=0.1
      RVEM(14)=1.D-8
      RVEM(15)=0

      IVEM(3)=0
      IVEM(10)=10
      IVEM(11)=11
      IVEM(12)=12
      IVEM(40)=LOUT
      IVEM(41)=50*OUTFLG
      IVEM(45)=500
      IVEM(46)=0
      IVEM(60)=10
      IVEM(70)=10
      IVEM(71)=1
      IVEM(72)=5000

      MASKL(1,1,1)=.TRUE.
      MASKL(1,1,2)=.FALSE.
      MASKF(1,1)=.TRUE.
      MASKF(1,2)=.TRUE.
C**
C**   the solution is returned after T+.25 is reached :
C**
9998  T=T+.25

      CALL VEMP02 (T,LU,U,EEST,LIVEM,IVEM,LLVEM,LVEM,LRVEM,RVEM,
     &             LNEK, NEK ,LRPARM ,RPARM ,LIPARM ,IPARM ,
     &             LDNOD,DNOD,LRDPRM,RDPARM,LIDPRM,IDPARM,LNODN,
     &             NODNUM,LNOD,NOD,LNOPRM,NOPARM,LBIG,RBIG,IBIG,
     &             MASKL,MASKF,USERB,USRFUT,USRFU,USERF,
     &             VEM500,VEM630)
      STEP=IVEM(3)
      IF (IVEM(2).NE.0) GOTO 9999
C**
C**
C**-----------------------------------------------------------------
C**
C**** compute the error on the geometrical nodes :
C**   ------------------------------------------
C**
      SPACE=IVEM(8)
      LSPACE=IVEM(9)
      IVEM(4)=30
      IVEM(30)=LOUT
      IVEM(31)=OUTFLG*0
      IVEM(32)=NN
      IVEM(33)=NK

      CALL VEMU05 (T,LU,ERRG,LU,U,LIVEM,IVEM,
     &             LNEK, NEK ,LRPARM ,RPARM ,LIPARM ,IPARM ,
     &             LDNOD,DNOD,LRDPRM,RDPARM,LIDPRM,IDPARM,LNODN,
     &             NODNUM,LNOD,NOD,LNOPRM,NOPARM,LSPACE,
     &             RBIG(SPACE),IBIG(RPI*(SPACE-1)+1),USERC)
      IF (IVEM(2).NE.0) GOTO 9999
C**
C**-----------------------------------------------------------------
C**
C**** print the error and its norm :
C**   ----------------------------
C**
      IVEM(23)=LOUT
      IVEM(24)=1
      IVEM(25)=IVEM(32)
      IVEM(26)=IVEM(33)

      CALL VEMU13 (LU,ERRG,NRMERR,LIVEM,IVEM,
     &             LNEK, NEK ,LRPARM ,RPARM ,LIPARM ,IPARM ,
     &             LDNOD,DNOD,LRDPRM,RDPARM,LIDPRM,IDPARM,LNODN,
     &             NODNUM,LNOD,NOD,LNOPRM,NOPARM,
     &             LSPACE,RBIG(SPACE),IBIG(RPI*(SPACE-1)+1))
      IF (IVEM(2).NE.0) GOTO 9999
C**
C**-----------------------------------------------------------------
C**
C**   If step is equal to 1 the T-integration is continued :
C**
      IF (STEP.EQ.1) GOTO 9998
C**
C**-----------------------------------------------------------------
C**
C**** end of calculation
C**   ------------------
C**
9999  CALL COMEND(IVEM(200),INFO)
      E    N    D

      SUBROUTINE USERU0(T,NE,L,DIM,X,NOP,NOPARM,COMPU,U0)
C**
C*******************************************************************
C**
C**  the routine USERU0 sets the initial solution, see vemu08.
C**
C*******************************************************************
C**
      INTEGER          NE,L,DIM,NOP,COMPU

      DOUBLE PRECISION T,X(L,DIM),NOPARM(L,NOP),U0(NE)
C**
C**-----------------------------------------------------------------
C**
      INTEGER Z
C**
C**-----------------------------------------------------------------
C**
C**** start of calculation :
C**   --------------------
C**
      IF (COMPU.EQ.1) THEN
        DO 10 Z=1,NE
          U0(Z) = X(Z,3) * COS(T**2)
10      CONTINUE
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**** end of calculation
C**   ------------------
C**
      R E T U R N
C**---end of USERU0-------------------------------------------------
      E    N    D

      SUBROUTINE USERB(T,COMPU,RHS,
     &                 NRSDP,RSDPRM,NRVDP,RVDP1,RVDPRM,
     &                 NISDP,ISDPRM,NIVDP,IVDP1,IVDPRM,
     &                 NDC,DIM,X,NOP,NOPARM,B)
C**
C*******************************************************************
C**
C**  the routine USERB sets the Dirichlet boundary conditions,
C**  see userb. here the exact solution x3 is prescribed.
C**
C*******************************************************************
C**
      INTEGER          COMPU,RHS,NRSDP,NRVDP,RVDP1,NISDP,NIVDP,IVDP1,
     &                 NDC,DIM,NOP

      DOUBLE PRECISION T,RSDPRM(NRSDP),RVDPRM(RVDP1,NRVDP),
     &                 X(NDC,DIM),NOPARM(NDC,NOP),B(NDC)

      INTEGER          ISDPRM(NISDP),IVDPRM(IVDP1,NIVDP)
C**
C**-----------------------------------------------------------------
C**
      INTEGER Z
C**
C**-----------------------------------------------------------------
C**
C**** start of calculation :
C**   --------------------
C**
      IF (COMPU.EQ.1) THEN
        DO 10 Z=1,NDC
          B(Z) = X(Z,3) * COS(T**2)
10      CONTINUE
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**** end of calculation
C**   ------------------
C**
      R E T U R N
C**---end of USERB--------------------------------------------------
      E    N    D
      SUBROUTINE USERF (T,GROUP,CLASS,COMPV,RHS,LAST,
     &                  NELIS,L,DIM,X,TAU,NK,U,DUDX,
     &                  LT,UT,DUTDX,NOP,NOPARM,DNOPDX,
     &                  NRSP,RSPARM,NRVP,RVP1,RVPARM,
     &                  NISP,ISPARM,NIVP,IVP1,IVPARM,
     &                  F1,F0)
C**
C*******************************************************************
C**
C**  the routine USERF sets the coefficients of the linear form F,
C**  see userf:
C**
C** It is f=-16*x1*x2*(1-x1)*(1-x2) * u1x3
C**       g=-(n1*u1x1+n2*u1x1+n3*u1x3)=-n3
C**
C**  computed by the exact solution u1=x3. (n1,n2,n3) is the outer
C**  normal field, which is computed by the tangential field:
C**  n3=(tau11*tau23-tau21*tau12)/norm , norm is the normalization.
C**
C*******************************************************************
C**
      INTEGER          GROUP,CLASS,COMPV,RHS,LAST,NELIS,L,LT,DIM,NK,NOP,
     &                 NRSP,RVP1,NRVP,NISP,IVP1,NIVP

      DOUBLE PRECISION T,X(L,DIM),TAU(L,DIM,CLASS),U(L,NK),UT(LT,NK),
     &                 DUDX(L,NK,CLASS),DUTDX(LT,NK,CLASS),
     &                 NOPARM(L,NOP),DNOPDX(L,NOP,CLASS),
     &                 RSPARM(NRSP),RVPARM(RVP1,NRVP),
     &                 F1(L,CLASS),F0(L)

      INTEGER          ISPARM(NISP),IVPARM(IVP1,NIVP)
C**
C**-----------------------------------------------------------------
C**
      INTEGER          Z
      DOUBLE PRECISION NORM
C**
C**-----------------------------------------------------------------
C**
C**** start of calculation :
C**   --------------------
C**
C**   the coefficients for the volume integration :
C**
      IF (CLASS.EQ.3) THEN
        IF (COMPV.EQ.1) THEN
          DO 12 Z=1,NELIS
            F1(Z,1)=DUDX(Z,1,1)
            F1(Z,2)=DUDX(Z,1,2)
            F1(Z,3)=DUDX(Z,1,3)
            F0(Z)=16*X(Z,1)*X(Z,2)*(1.-X(Z,1))*(1.-X(Z,2))*
     &         (DUDX(Z,1,3)-COS(T**2))+UT(Z,1)+2*T*SIN(T**2)*X(Z,3)
12        CONTINUE
        ENDIF
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**   the coefficients for the area integration :
C**
      IF (CLASS.EQ.2) THEN
        IF (COMPV.EQ.1) THEN
          DO 11 Z=1,NELIS
            NORM = (TAU(Z,2,1)*TAU(Z,3,2)-TAU(Z,3,1)*TAU(Z,2,2))**2
     &           + (TAU(Z,1,1)*TAU(Z,3,2)-TAU(Z,3,1)*TAU(Z,1,2))**2
     &           + (TAU(Z,1,1)*TAU(Z,2,2)-TAU(Z,2,1)*TAU(Z,1,2))**2
            F0(Z)=-(TAU(Z,1,1)*TAU(Z,2,2)-TAU(Z,2,1)*TAU(Z,1,2))
     &                                            /SQRT(NORM)*COS(T**2)
11        CONTINUE
        ENDIF
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**** end of calculation
C**   ------------------
C**
      R E T U R N
C**---end of USERF-------------------------------------------------
      E    N    D

      SUBROUTINE USRFU(T,GROUP,CLASS,COMPV,COMPU,LAST,
     &                 NELIS,L,DIM,X,TAU,NK,U,DUDX,
     &                 LT,UT,DUTDX,NOP,NOPARM,DNOPDX,
     &                 NRSP,RSPARM,NRVP,RVP1,RVPARM,
     &                 NISP,ISPARM,NIVP,IVP1,IVPARM,
     &                 F1UX,F1U,F0UX,F0U)
C**
C*******************************************************************
C**
C**  the routine USRFU sets the Frechet derivative of the linear
C**  form F, see usrfu:
C**
C*******************************************************************
C**
      INTEGER          GROUP,CLASS,COMPV,COMPU,LAST,NELIS,L,LT,
     &                 DIM,NK,NOP,NRSP,RVP1,NRVP,NISP,IVP1,NIVP

      DOUBLE PRECISION T,X(L,DIM),TAU(L,DIM,CLASS),U(L,NK),UT(LT,NK),
     &                 DUDX(L,NK,CLASS),DUTDX(LT,NK,CLASS),
     &                 NOPARM(L,NOP),DNOPDX(L,NOP,CLASS),
     &                 RSPARM(NRSP),RVPARM(RVP1,NRVP),
     &                 F1UX(L,CLASS,CLASS),F1U(L,CLASS),F0UX(L,CLASS),
     &                 F0U(L)

      INTEGER          ISPARM(NISP),IVPARM(IVP1,NIVP)
C**
C**-----------------------------------------------------------------
C**
      INTEGER Z
C**
C**-----------------------------------------------------------------
C**
C**** start of calculation :
C**   ---------------------
C**
C**   the coefficients for the area integration :
C**
      IF (CLASS.EQ.3) THEN
        IF ((COMPV.EQ.1).AND.(COMPU.EQ.1)) THEN
          DO 112 Z=1,NELIS
            F1UX(Z,1,1)=1.
            F1UX(Z,2,2)=1.
            F1UX(Z,3,3)=1.
            F0UX(Z,3)=16*X(Z,1)*X(Z,2)*(1.-X(Z,1))*(1.-X(Z,2))
112       CONTINUE
        ENDIF
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**** end of calculation
C**   ------------------
C**
      R E T U R N
C**---end of USRFU--------------------------------------------------
      E    N    D

      SUBROUTINE USRFUT(T,GROUP,CLASS,COMPV,COMPU,LAST,
     &                  NELIS,L,DIM,X,TAU,NK,U,DUDX,
     &                  LT,UT,DUTDX,NOP,NOPARM,DNOPDX,
     &                  NRSP,RSPARM,NRVP,RVP1,RVPARM,
     &                  NISP,ISPARM,NIVP,IVP1,IVPARM,
     &                  F1UTX,F1UT,F0UTX,F0UT)
C**
C*******************************************************************
C**
C**  the routine USRFU sets the Frechet derivative of F with
C**  respect of ut, see usrfu:
C**
C*******************************************************************
C**
      INTEGER          GROUP,CLASS,COMPV,COMPU,LAST,NELIS,L,LT,
     &                 DIM,NK,NOP,NRSP,RVP1,NRVP,NISP,IVP1,NIVP

      DOUBLE PRECISION T,X(L,DIM),TAU(L,DIM,CLASS),U(L,NK),UT(LT,NK),
     &                 DUDX(L,NK,CLASS),DUTDX(LT,NK,CLASS),
     &                 NOPARM(L,NOP),DNOPDX(L,NOP,CLASS),
     &                 RSPARM(NRSP),RVPARM(RVP1,NRVP),
     &                 F1UTX(L,CLASS,CLASS),F1UT(L,CLASS),
     &                 F0UTX(L,CLASS),F0UT(L)

      INTEGER          ISPARM(NISP),IVPARM(IVP1,NIVP)
C**
C**-----------------------------------------------------------------
C**
      INTEGER Z
C**
C**-----------------------------------------------------------------
C**
C**** start of calculation :
C**   ---------------------
C**
C**   the coefficients for the area integration :
C**
      IF (CLASS.EQ.3) THEN
        IF ((COMPV.EQ.1).AND.(COMPU.EQ.1)) THEN
          DO 112 Z=1,NELIS
            F0UT(Z)=1.
112       CONTINUE
        ENDIF
      ENDIF
C**
C**-----------------------------------------------------------------
C**
C**** end of calculation
C**   ------------------
C**
      R E T U R N
C**---end of USRFUT-------------------------------------------------
      E    N    D

      SUBROUTINE USERC(T,GROUP,LAST,NELIS,
     &                 NRSP,RSPARM,NRVP,RVP1,RVPARM,
     &                 NISP,ISPARM,NIVP,IVP1,IVPARM,
     &                 L,DIM,X,NK,U,DUDX,NOP,NOPARM,DNOPDX,N,CU)
C**
C*******************************************************************
C**
C**  the routine USERC computes in this case the error of the
C**  computed solution, see userc.
C**
C*******************************************************************
C**
      INTEGER            GROUP,LAST,NELIS,L,DIM,NK,N,
     &                   NRSP,RVP1,NRVP,NISP,IVP1,NIVP,NOP

      DOUBLE PRECISION   T,X(L,DIM),U(L,NK),DUDX(L,NK,DIM),
     &                   RSPARM(NRSP),RVPARM(RVP1,NRVP),
     &                   NOPARM(L,NOP),DNOPDX(L,NOP,DIM),CU(L,N)

      INTEGER            ISPARM(NISP),IVPARM(IVP1,NIVP)
C**
C**-----------------------------------------------------------------
C**
      INTEGER Z
C**
C**-----------------------------------------------------------------
C**
C**** start of calculation :
C**   --------------------
C**
      DO 10 Z=1,NELIS
        CU(Z,1) = ABS( U(Z,1) - X(Z,3) * COS(T*T) )
10    CONTINUE
C**
C**-----------------------------------------------------------------
C**
C**** end of calculation
C**   ------------------
C**
      R E T U R N
C**---end of USERC--------------------------------------------------
      E    N    D