Google

Bouncy Castle Cryptography 1.11 API Specification: Class WrapCipherSpi
Bouncy Castle Cryptography 1.11

org.bouncycastle.jce.provider
Class WrapCipherSpi

java.lang.Object
  |
  +--javax.crypto.CipherSpi
        |
        +--org.bouncycastle.jce.provider.WrapCipherSpi
All Implemented Interfaces:
PBE
Direct Known Subclasses:
JCEBlockCipher, JCEElGamalCipher, JCEIESCipher, JCERSACipher, JCEStreamCipher, WrapCipherSpi.AESWrap

public abstract class WrapCipherSpi
extends CipherSpi
implements PBE


Inner Class Summary
static class WrapCipherSpi.AESWrap
           
 
Inner classes inherited from class org.bouncycastle.jce.provider.PBE
PBE.Util
 
Field Summary
protected  java.security.AlgorithmParameters engineParams
           
protected  int pbeHash
           
protected  int pbeIvSize
           
protected  int pbeKeySize
           
protected  int pbeType
           
 
Fields inherited from interface org.bouncycastle.jce.provider.PBE
MD5, PKCS12, PKCS5S1, PKCS5S2, RIPEMD160, SHA1, TIGER
 
Constructor Summary
protected WrapCipherSpi()
           
protected WrapCipherSpi(Wrapper wrapEngine)
           
 
Method Summary
protected  byte[] engineDoFinal(byte[] input, int inputOffset, int inputLen)
          Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation.
protected  int engineDoFinal(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)
          Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation.
protected  int engineGetBlockSize()
          Returns the block size (in bytes).
protected  byte[] engineGetIV()
          Returns the initialization vector (IV) in a new buffer.
protected  int engineGetKeySize(java.security.Key key)
          Returns the key size of the given key object.
protected  int engineGetOutputSize(int inputLen)
          Returns the length in bytes that an output buffer would need to be in order to hold the result of the next update or doFinal operation, given the input length inputLen (in bytes).
protected  java.security.AlgorithmParameters engineGetParameters()
          Returns the parameters used with this cipher.
protected  void engineInit(int opmode, java.security.Key key, java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random)
          Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.
protected  void engineInit(int opmode, java.security.Key key, java.security.AlgorithmParameters params, java.security.SecureRandom random)
          Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.
protected  void engineInit(int opmode, java.security.Key key, java.security.SecureRandom random)
          Initializes this cipher with a key and a source of randomness.
protected  void engineSetMode(java.lang.String mode)
          Sets the mode of this cipher.
protected  void engineSetPadding(java.lang.String padding)
          Sets the padding mechanism of this cipher.
protected  java.security.Key engineUnwrap(byte[] wrappedKey, java.lang.String wrappedKeyAlgorithm, int wrappedKeyType)
          Unwrap a previously wrapped key.
protected  byte[] engineUpdate(byte[] input, int inputOffset, int inputLen)
          Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.
protected  int engineUpdate(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)
          Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.
protected  byte[] engineWrap(java.security.Key key)
          Wrap a key.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

pbeType

protected int pbeType

pbeHash

protected int pbeHash

pbeKeySize

protected int pbeKeySize

pbeIvSize

protected int pbeIvSize

engineParams

protected java.security.AlgorithmParameters engineParams
Constructor Detail

WrapCipherSpi

protected WrapCipherSpi()

WrapCipherSpi

protected WrapCipherSpi(Wrapper wrapEngine)
Method Detail

engineGetBlockSize

protected int engineGetBlockSize()
Description copied from class: CipherSpi
Returns the block size (in bytes).
Overrides:
engineGetBlockSize in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Returns:
the block size (in bytes), or 0 if the underlying algorithm is not a block cipher

engineGetIV

protected byte[] engineGetIV()
Description copied from class: CipherSpi
Returns the initialization vector (IV) in a new buffer.

This is useful in the context of password-based encryption or decryption, where the IV is derived from a user-provided passphrase.

Overrides:
engineGetIV in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Returns:
the initialization vector in a new buffer, or null if the underlying algorithm does not use an IV, or if the IV has not yet been set.

engineGetKeySize

protected int engineGetKeySize(java.security.Key key)
Description copied from class: CipherSpi
Returns the key size of the given key object.

This concrete method has been added to this previously-defined abstract class. It throws an UnsupportedOperationException if it is not overridden by the provider.

Overrides:
engineGetKeySize in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
key - the key object.
Returns:
the key size of the given key object.
Throws:
java.security.InvalidKeyException - if key is invalid.

engineGetOutputSize

protected int engineGetOutputSize(int inputLen)
Description copied from class: CipherSpi
Returns the length in bytes that an output buffer would need to be in order to hold the result of the next update or doFinal operation, given the input length inputLen (in bytes).

This call takes into account any unprocessed (buffered) data from a previous update call, and padding.

The actual output length of the next update or doFinal call may be smaller than the length returned by this method.

Overrides:
engineGetOutputSize in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
inputLen - the input length (in bytes)
Returns:
the required output buffer size (in bytes)

engineGetParameters

protected java.security.AlgorithmParameters engineGetParameters()
Description copied from class: CipherSpi
Returns the parameters used with this cipher.

The returned parameters may be the same that were used to initialize this cipher, or may contain a combination of default and random parameter values used by the underlying cipher implementation if this cipher requires algorithm parameters but was not initialized with any.

Overrides:
engineGetParameters in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Returns:
the parameters used with this cipher, or null if this cipher does not use any parameters.

engineSetMode

protected void engineSetMode(java.lang.String mode)
Description copied from class: CipherSpi
Sets the mode of this cipher.
Overrides:
engineSetMode in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
mode - the cipher mode
Throws:
java.security.NoSuchAlgorithmException - if the requested cipher mode does not exist

engineSetPadding

protected void engineSetPadding(java.lang.String padding)
                         throws NoSuchPaddingException
Description copied from class: CipherSpi
Sets the padding mechanism of this cipher.
Overrides:
engineSetPadding in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
padding - the padding mechanism
Throws:
NoSuchPaddingException - if the requested padding mechanism does not exist

engineInit

protected void engineInit(int opmode,
                          java.security.Key key,
                          java.security.spec.AlgorithmParameterSpec params,
                          java.security.SecureRandom random)
                   throws java.security.InvalidKeyException,
                          java.security.InvalidAlgorithmParameterException
Description copied from class: CipherSpi
Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters and params is null, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidAlgorithmParameterException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using engineGetParameters or engineGetIV (if the parameter is an IV).

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them from random.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Overrides:
engineInit in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
params - the algorithm parameters
random - the source of randomness
Throws:
java.security.InvalidKeyException - if the given key is inappropriate for initializing this cipher
java.security.InvalidAlgorithmParameterException - if the given algorithm parameters are inappropriate for this cipher, or if this cipher is being initialized for decryption and requires algorithm parameters and params is null.

engineInit

protected void engineInit(int opmode,
                          java.security.Key key,
                          java.security.AlgorithmParameters params,
                          java.security.SecureRandom random)
                   throws java.security.InvalidKeyException,
                          java.security.InvalidAlgorithmParameterException
Description copied from class: CipherSpi
Initializes this cipher with a key, a set of algorithm parameters, and a source of randomness.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters and params is null, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidAlgorithmParameterException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using engineGetParameters or engineGetIV (if the parameter is an IV).

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them from random.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Overrides:
engineInit in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
params - the algorithm parameters
random - the source of randomness
Throws:
java.security.InvalidKeyException - if the given key is inappropriate for initializing this cipher
java.security.InvalidAlgorithmParameterException - if the given algorithm parameters are inappropriate for this cipher, or if this cipher is being initialized for decryption and requires algorithm parameters and params is null.

engineInit

protected void engineInit(int opmode,
                          java.security.Key key,
                          java.security.SecureRandom random)
                   throws java.security.InvalidKeyException
Description copied from class: CipherSpi
Initializes this cipher with a key and a source of randomness.

The cipher is initialized for one of the following four operations: encryption, decryption, key wrapping or key unwrapping, depending on the value of opmode.

If this cipher requires any algorithm parameters that cannot be derived from the given key, the underlying cipher implementation is supposed to generate the required parameters itself (using provider-specific default or random values) if it is being initialized for encryption or key wrapping, and raise an InvalidKeyException if it is being initialized for decryption or key unwrapping. The generated parameters can be retrieved using engineGetParameters or engineGetIV (if the parameter is an IV).

If this cipher (including its underlying feedback or padding scheme) requires any random bytes (e.g., for parameter generation), it will get them from random.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other words, initializing a Cipher is equivalent to creating a new instance of that Cipher and initializing it.

Overrides:
engineInit in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
opmode - the operation mode of this cipher (this is one of the following: ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
key - the encryption key
random - the source of randomness
Throws:
java.security.InvalidKeyException - if the given key is inappropriate for initializing this cipher, or if this cipher is being initialized for decryption and requires algorithm parameters that cannot be determined from the given key.

engineUpdate

protected byte[] engineUpdate(byte[] input,
                              int inputOffset,
                              int inputLen)
Description copied from class: CipherSpi
Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, are processed, and the result is stored in a new buffer.

Overrides:
engineUpdate in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
Returns:
the new buffer with the result, or null if the underlying cipher is a block cipher and the input data is too short to result in a new block.

engineUpdate

protected int engineUpdate(byte[] input,
                           int inputOffset,
                           int inputLen,
                           byte[] output,
                           int outputOffset)
Description copied from class: CipherSpi
Continues a multiple-part encryption or decryption operation (depending on how this cipher was initialized), processing another data part.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, are processed, and the result is stored in the output buffer, starting at outputOffset inclusive.

If the output buffer is too small to hold the result, a ShortBufferException is thrown.

Overrides:
engineUpdate in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
output - the buffer for the result
outputOffset - the offset in output where the result is stored
Returns:
the number of bytes stored in output
Throws:
ShortBufferException - if the given output buffer is too small to hold the result

engineDoFinal

protected byte[] engineDoFinal(byte[] input,
                               int inputOffset,
                               int inputLen)
                        throws IllegalBlockSizeException,
                               BadPaddingException
Description copied from class: CipherSpi
Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation. The data is encrypted or decrypted, depending on how this cipher was initialized.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, and any input bytes that may have been buffered during a previous update operation, are processed, with padding (if requested) being applied. The result is stored in a new buffer.

A call to this method resets this cipher object to the state it was in when previously initialized via a call to engineInit. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to engineInit) more data.

Overrides:
engineDoFinal in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
Returns:
the new buffer with the result
Throws:
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes

engineDoFinal

protected int engineDoFinal(byte[] input,
                            int inputOffset,
                            int inputLen,
                            byte[] output,
                            int outputOffset)
                     throws IllegalBlockSizeException,
                            BadPaddingException
Description copied from class: CipherSpi
Encrypts or decrypts data in a single-part operation, or finishes a multiple-part operation. The data is encrypted or decrypted, depending on how this cipher was initialized.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, and any input bytes that may have been buffered during a previous update operation, are processed, with padding (if requested) being applied. The result is stored in the output buffer, starting at outputOffset inclusive.

If the output buffer is too small to hold the result, a ShortBufferException is thrown.

A call to this method resets this cipher object to the state it was in when previously initialized via a call to engineInit. That is, the object is reset and available to encrypt or decrypt (depending on the operation mode that was specified in the call to engineInit) more data.

Overrides:
engineDoFinal in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length
output - the buffer for the result
outputOffset - the offset in output where the result is stored
Returns:
the number of bytes stored in output
Throws:
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested (only in encryption mode), and the total input length of the data processed by this cipher is not a multiple of block size
ShortBufferException - if the given output buffer is too small to hold the result
BadPaddingException - if this cipher is in decryption mode, and (un)padding has been requested, but the decrypted data is not bounded by the appropriate padding bytes

engineWrap

protected byte[] engineWrap(java.security.Key key)
                     throws IllegalBlockSizeException,
                            java.security.InvalidKeyException
Description copied from class: CipherSpi
Wrap a key.

This concrete method has been added to this previously-defined abstract class. (For backwards compatibility, it cannot be abstract.) It may be overridden by a provider to wrap a key. Such an override is expected to throw an IllegalBlockSizeException or InvalidKeyException (under the specified circumstances), if the given key cannot be wrapped. If this method is not overridden, it always throws an UnsupportedOperationException.

Overrides:
engineWrap in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
key - the key to be wrapped.
Returns:
the wrapped key.
Throws:
IllegalBlockSizeException - if this cipher is a block cipher, no padding has been requested, and the length of the encoding of the key to be wrapped is not a multiple of the block size.
java.security.InvalidKeyException - if it is impossible or unsafe to wrap the key with this cipher (e.g., a hardware protected key is being passed to a software-only cipher).

engineUnwrap

protected java.security.Key engineUnwrap(byte[] wrappedKey,
                                         java.lang.String wrappedKeyAlgorithm,
                                         int wrappedKeyType)
                                  throws java.security.InvalidKeyException
Description copied from class: CipherSpi
Unwrap a previously wrapped key.

This concrete method has been added to this previously-defined abstract class. (For backwards compatibility, it cannot be abstract.) It may be overridden by a provider to unwrap a previously wrapped key. Such an override is expected to throw an InvalidKeyException if the given wrapped key cannot be unwrapped. If this method is not overridden, it always throws an UnsupportedOperationException.

Overrides:
engineUnwrap in class CipherSpi
Following copied from class: javax.crypto.CipherSpi
Parameters:
wrappedKey - the key to be unwrapped.
wrappedKeyAlgorithm - the algorithm associated with the wrapped key.
wrappedKeyType - the type of the wrapped key. This is one of SECRET_KEY, PRIVATE_KEY, or PUBLIC_KEY.
Returns:
the unwrapped key.
Throws:
java.security.InvalidKeyException - if wrappedKey does not represent a wrapped key, or if the algorithm associated with the wrapped key is different from wrappedKeyAlgorithm and/or its key type is different from wrappedKeyType.
java.security.NoSuchAlgorithmException - - if no installed providers can create keys for the wrappedKeyAlgorithm.

Bouncy Castle Cryptography 1.11